Written Exam for the M.Sc. in Economics Autumn 2013 (Fall Term)

Financial Econometrics A: Volatility Modelling

Final Exam: Masters course
Exam date: 20/2-2014

3-hour open book exam.

Please note there are a total of 8 questions which should all be replied to. That is, $\mathbf{4}$ questions under Question A, and $\mathbf{4}$ under Question B.

Total numbers of pages (including this one): 4
Please also note that the language used in your exam paper must correspond to the language of the title for which you registered during exam registration. I.e. if you registered for the English title of the course, you must write your exam paper in English. Likewise, if you registered for the Danish title of the course or if you registered for the English title which was followed by "eksamen på dansk" in brackets, you must write your exam paper in Danish. If you are in doubt about which title you registered for, please see the print of your exam registration from the students' self-service system.

Question A:

Question A.1: A novel class of GARCH (nGARCH) models may be presented as follows:

Consider y_{t} returns at time t, and σ_{t}^{2} the conditional volatility, where σ_{t}^{2} is specified conditional on the past variables of y_{t} and σ_{t}^{2}, that is $\mathcal{F}_{t-1}=$ $\left(y_{t-1}, y_{t-2}, \ldots, y_{0} ; \sigma_{t-1}^{2} \ldots, \sigma_{1}^{2}\right)$. We specify first the equation for the (log) density $\log p(\cdot)$ of y_{t} conditional on σ_{t}^{2} and \mathcal{F}_{t-1}. In the Gaussian case, we have the usual.

$$
\log p\left(y_{t} \mid \sigma_{t}^{2}, \mathcal{F}_{t-1}\right)=-\frac{1}{2} \log \sigma_{t}^{2}-\frac{1}{2} y_{t}^{2} / \sigma_{t}^{2} .
$$

What differs in the nGARCH model is the specification of σ_{t}^{2}, where in general this is specified as,

$$
\begin{aligned}
\sigma_{t}^{2} & =\gamma_{1}+\gamma_{2} s_{t-1}+\gamma_{3} \sigma_{t-1}^{2} \\
s_{t} & =\delta_{t}\left[E\left(\delta_{t}^{2} \mid \mathcal{F}_{t-1}\right)\right]^{-1}, \text { and } \delta_{t}=\partial \log p(\cdot) / \partial \sigma_{t}^{2}
\end{aligned}
$$

Show that the nGARCH as specified above actually can be rewritten as a classic GARCH model, that is as,

$$
\sigma_{t}^{2}=\gamma_{1}+\gamma_{2} y_{t-1}^{2}+\left(\gamma_{3}-\gamma_{2}\right) \sigma_{t-1}^{2}
$$

Question A.2: Establish that if $0 \leq \gamma_{2} \leq \gamma_{3}<1$ then σ_{t}^{2} is weakly mixing and has a stationary solution with $E \sigma_{t}^{2}<\infty$.

Question A.3: It follows that with $S_{\gamma_{2}}$ the score in the γ_{2} direction (up to a constant), then

$$
S_{\gamma_{2}}=\sum_{t=1}^{T}\left(\frac{y_{t}^{2}}{\sigma_{t}^{4}}-\frac{1}{\sigma_{t}^{2}}\right) \partial \sigma_{t}^{2} / \partial \gamma_{2} .
$$

Find $\partial \sigma_{t}^{2} / \partial \gamma_{2}$ and show that if $\gamma_{3}=\gamma_{2}$, then $\frac{1}{\sqrt{T}} S_{\gamma_{2}}$ is asymptotically Gaussian distributed if $E \sigma_{t-1}^{4}<\infty$. Explain what this can be used for.

Question A.4: The figure below shows returns y_{t} for $t=0,1, \ldots, 687$, and Table 1 output from estimation of the GASGARCH. Comment on all output in the tab

Return series y_{t}

$$
\begin{array}{|l|l|l|l|}
\hline \text { nGARCH } & \hat{\gamma}_{2}=0.1 & \hat{\gamma}_{3}=0.98 & \text { LM-ARCH p-value: } 0.76 \\
\hline
\end{array}
$$

Table 1: Estimation by nGARH

Question B:

Consider the threshold SV (TSV) model as given by,

$$
\begin{align*}
y_{t} & =\sigma_{t} z_{t} \tag{B.1}\\
\log \sigma_{t}^{2} & =\rho \delta_{t} \log \sigma_{t-1}^{2}+\xi_{t} \tag{B.2}
\end{align*}
$$

where z_{t} and ξ_{t} are independent, with z_{t} i.i.d. $\mathrm{N}(0,1)$ and ξ_{t} i.i.dN $\left(0, \sigma_{\xi}^{2}\right)$. Moreover, $\delta_{t}=1\left(\log \sigma_{t-1}^{2} \leq \gamma\right)$, for some positive threshold parameter $\gamma>0$. That is $\delta_{t}=1$ if $\log \sigma_{t-1}^{2} \leq \gamma$ and zero otherwise.

Question B.1: Show that $\log \sigma_{t}^{2}$ is weakly mixing and has a stationary representation for $|\rho|<1$, and discuss what this implies, if anything, for the joint evolution of y_{t} and $\log \sigma_{t}^{2}$?

Question B.2: Set $Y_{t}:=\log \left|y_{t}\right|-\mu$, where $\mu=E \log \left|z_{t}\right|$. Moreover, set $X_{t}:=\log \sigma_{t}$. It follows that the system for Y_{t} and X_{t} can be written as,

$$
Y_{t}=X_{t}+\varepsilon_{t}, \quad X_{t}=\rho\left(X_{t-1}\right) X_{t-1}+\xi_{t} .
$$

Here ε_{t} is i.i.d. $\left(0, \sigma_{\varepsilon}^{2}\right)$. Moreover, $\rho\left(X_{t-1}\right)=\rho 1\left(X_{t-1} \leq \gamma / 2\right)$.
Argue that ε_{t} is not Gaussian, but that ε_{t} is an iid sequence with mean zero and find the variance.

Explain why one would be interested in computing $X_{t \mid t-1}=E\left(X_{t} \mid Y_{1: t-1}\right)$ as a function of $X_{t-1 \mid t-1}=E\left(X_{t-1} \mid Y_{1: t-1}\right)$.

Explain also why the linear Kalman filter would not work.
Question B.3: Provide an outline of how you would find the MLE of $\theta=$ $\left(\rho, \gamma, \sigma_{\xi}^{2}\right)$ based on the particle filter.

State the missing "" part in the piece of code below from ox for the Bootstrap particle filter.

```
DrawProposal(x_1)
{
decl x;
x = ......+ sqrt(sigma)*rann(1,1);
return x;
}
```

Question B.4: The figure below shows a return series $y_{t}, t=1,2, \ldots, T$ together with $\hat{\sigma}_{t, M L E}^{2}$ based om MLE using the particle filter. Explain how $\hat{\sigma}_{t, M L E}^{2}$ could be obtained in different ways by using a particle filter. Elaborate.

Return series y_{t} and estimated σ_{t}^{2}

